Abstract
We propose a method for accurately simulating dissipative forces in deformable bodies when using optimization-based integrators. We represent such forces using dissipation functions which may be nonlinear in both positions and velocities, enabling us to model a range of dissipative effects including Coulomb friction, Rayleigh damping, and power-law dissipation. We propose a general method for incorporating dissipative forces into optimization-based time integration schemes, which hitherto have been applied almost exclusively to systems with only conservative forces. To improve accuracy and minimize artificial damping, we provide an optimization-based version of the second-order accurate TR-BDF2 integrator. Finally, we present a method for modifying arbitrary dissipation functions to conserve linear and angular momentum, allowing us to eliminate the artificial angular momentum loss caused by Rayleigh damping.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have