Abstract
ABSTRACTAccurate crop-type classification is a challenging task due, primarily, to the high within-class spectral variations of individual crops during the growing season (phenological development) and, second, to the high between-class spectral similarity of crop types. Utilizing within-season multi-temporal optical and multi-polarization synthetic aperture radar (SAR) data, this study introduces a combined object- and pixel-based image classification methodology for accurate crop-type classification. Particularly, the study investigates the improvement of crop-type classification by using the least number of multi-temporal RapidEye (RE) images and multi-polarization Radarsat-2 (RS-2) data utilized in an object- and pixel-based image analysis framework. The method was tested on a study area in Manitoba, Canada, using three different classifiers including the standard Maximum Likelihood (ML), Decision Tree (DT), and Random Forest (RF) classifiers. Using only two RE images of July and August, the proposed method results in overall accuracies (OAs) of about 95%, 78%, and 93% for the ML, DT, and RF classifiers, respectively. Moreover, the use of only two quad-pol images of RS-2 of June and September resulted in OAs of 92%, 75%, and 90% for the ML, DT, and RF classifiers, respectively. The best classification results were achieved by the synergistic use of two RE and two RS-2 images. In this case, the overall classification accuracies were 97% for both ML and RF classifiers. In addition, the average producer’s accuracies of 95% and 96% were achieved by the ML and RF classifiers, respectively, whereas the average user accuracy was 94% for both classifiers. The results indicated promising potentials for rapid and cost-effective local-scale crop-type classification using a limited number of high-resolution optical and multi-polarization SAR images. Very accurate classification results can be considered as a replacement for sampling the agricultural fields at the local scale. The result of this very accurate classification at discrete locations (approximately 25 × 25 km frames) can be applied in a separate procedure to increase the accuracy of crop area estimation at the regional to provincial scale by linking these local very accurate spatially discrete results to national wall-to-wall continuous crop classification maps.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have