Abstract
Floor localization is crucial for various applications such as emergency response and rescue, indoor positioning, and recommender systems. The existing floor localization systems have many drawbacks, like low accuracy, poor scalability, and high computational costs. In this paper, we first frame the problem of floor localization as one of learning node embeddings to predict the floor label of a subgraph. Then, we introduce FloorLocator, a deep learning-based method for floor localization that integrates efficient spiking neural networks with powerful graph neural networks. This approach offers high accuracy, easy scalability to new buildings, and computational efficiency. Experimental results on using several public datasets demonstrate that FloorLocator outperforms state-of-the-art methods. Notably, in building B0, FloorLocator achieved recognition accuracy of 95.9%, exceeding state-of-the-art methods by at least 10%. In building B1, it reached an accuracy of 82.1%, surpassing the latest methods by at least 4%. These results indicate FloorLocator’s superiority in multi-floor building environment localization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.