Abstract

BackgroundSystemin has been extensively studied since it was discovered and is described as a peptidic hormone in tomato plants and other Solanaceae. Jasmonic acid and systemin are proposed to act through a positive feed-back loop with jasmonic acid, playing synergistic roles in response to both wounding and insect attack. Despite its biological relevance, most studies regarding the function of systemin in defence have been studied via PROSYSTEMIN (PROSYS) gene expression, which encodes the propeptide prosystemin that is later cleaved to systemin (SYS). Interestingly, hardly any studies have been based on quantification of the peptide.ResultsIn this study, a simple and accurate method for systemin quantification was developed to understand its impact on plant metabolism. The basal levels of systemin were found to be extremely low. To study the role of endogenous systemin on plant metabolism, systemin was quantified in a transgenic line overexpressing the PROSYS gene (PS+) and in a silenced antisense line (PS−). We evaluated the relevance of systemin in plant metabolism by analysing the metabolomic profiles of both lines compared to wildtype plants through untargeted metabolomic profiling. Compounds within the lignan biosynthesis and tyrosine metabolism pathways strongly accumulated in PS+ compared to wild-type plants and to plants from the PS− line. The exogenous treatments with SYS enhanced accumulation of lignans, which confirms the role of SYS in cell wall reinforcement. Unexpectedly, PS+ plants displayed wild-type levels of jasmonic acid (JA) but elevated accumulation of 12-oxo-phytodienoic acid (OPDA), suggesting that PS+ should not be used as an over-accumulator of JA in experimental setups.ConclusionsA simple method, requiring notably little sample manipulation to quantify the peptide SYS, is described. Previous studies were based on genetic changes. In our study, SYS accumulated at extremely low levels in wild-type tomato leaves, showed slightly higher levels in the PROSYSTEMIN-overexpressing plants and was absent in the silenced lines. These small changes have a significant impact on plant metabolism. SA and OPDA, but not JA, were higher in the PROSYS-overexpressing plants.

Highlights

  • Systemin has been extensively studied since it was discovered and is described as a peptidic hormone in tomato plants and other Solanaceae

  • Several peptides produced by Arabidopsis thaliana, called Peptides in Arabidopsis (AtPeps), and their receptors PEP-RECEPTOR 1 (PEPR1) and PEP-RECEPTOR 2 (PEPR2) have been recently described [10, 11]

  • The major changes observed in our study support an important regulatory role of SYS in the synthesis of metabolites implicated in cell wall structure

Read more

Summary

Introduction

Cell signalling for defence is regulated through secreted molecules that can be perceived by external membranelocalized receptors The perception of these molecules generates extracellular inputs that trigger downstream signalling outputs, which can in turn modulate cellular functions. Pastor et al Plant Methods (2018) 14:33 the immune response This signalling initiates the cascade of defence reactions that can have a microbial origin, the so-called microbe-associated molecular pattern (MAMPs), or are generated in the host from damaged cells, known as the damage-associated molecular patterns (DAMPs). Both signals are present in the apoplast and are detected by the host via launch of Pathogen Associated Molecular Pattern-Triggered Immunity (PTI) [6]. A homologue of AtPeps, ZmPep, was discovered in Zea mays [12], and its active peptide homologues displayed activities in different plant species against biotic stress [13]

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.