Abstract
PurposeRespiratory rate is a commonly used vital sign with various clinical applications. It serves as a crucial marker of acute health issues and any significant alteration in respiratory rate may be an early warning sign of major issues such as infections in the respiratory tract, respiratory failure, or cardiac arrest. Timely recognition of changes in respiratory rate enables prompt medical action, while neglecting to detect a change may lead to adverse patient outcomes. Here, we report on the performance of respiratory rate determined using a depth sensing camera system (RRdepth) which allows for continuous, non-contact ‘touchless’ monitoring of this important vital sign. MethodsThirty adult volunteers undertook a range of set breathing rates to cover a target breathing range of 4–40 breaths/min. Depth information was acquired from the torso region of the subjects using an Intel D415 RealSense camera positioned above the bed. The depth information was processed to generate a respiratory signal from which RRdepth was calculated. This was compared to a manually scored capnograph reference (RRcap). ResultsAn overall RMSD accuracy of 0.77 breaths/min was achieved across the target respiratory rate range with a corresponding bias of 0.05 breaths/min. This corresponded to a line of best fit given by RRdepth = 1.01 x RRcap – 0.22 breaths/min with an associated high degree of correlation (R = 0.997). A breakdown of the performance with respect to sub-ranges corresponding to respiratory rates or ≤7, >7-10, >10-20, >20-30, >30 breaths/min all exhibited RMSD accuracies of less than 1.00 breaths/min. We also had the opportunity to test the performance of spontaneous breathing of the subjects which occurred during the study and found an overall RMSD accuracy of 1.20 breaths/min with corresponding accuracies ≤1.30 breaths/min across each of the individual sub-ranges. ConclusionsWe have conducted an investigative study of a prototype depth sensing camera system for the non-contact monitoring of respiratory rate. The system achieved good performance with high accuracy across a wide range of rates including both clinically important high and low rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.