Abstract

Communication networks these days face a relentless increase in traffic load. Multi-gigabitper- second links are becoming widespread, and network devices are under continuous stress, so testing whether they guarantee the specified throughput or delay is a must. Software-based solutions, such as packet-train traffic injection, were adequate for lower speeds, but they have become inaccurate in the current scenario. Hardware-based solutions have proved to be very accurate, but usually at the expense of much higher development and acquisition costs. Fortunately, new affordable FPGA SoC devices, as well as high-level synthesis tools, can very efficiently reduce these costs. In this article we show the advantages of hardware-based solutions in terms of accuracy, comparing the results obtained in an FPGA SoC development platform and in NetFPGA-10G to those of software. Results show that a hardware-based solution is significantly better, especially at 10 Gb/s. By leveraging high-level synthesis and open source platforms, prototypes were quickly developed. Noticeable advantages of our proposal are high accuracy, competitive cost with respect to the software counterpart, which runs in high-end off-the-shelf workstations, and the capability to easily evolve to upcoming 40 Gb/s and 100 Gb/s networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.