Abstract

BACKGROUND: An integral part of modern orthopedic dentistry is the rehabilitation of patients with partial or completely missing teeth using intraosseous implant prosthetics. Despite the high success rate of implant integration, practicing dentists continue to encounter biological and technical complications during prosthetic treatment. One of the reasons for the resulting complications is inaccuracies in the design of orthopedic components. Since today the Russian dental market offers a wide range of suprastructures from different manufacturers and price categories, there is a need to compare the accuracy of their designs.
 AIM: To identify the difference between the accuracy of fit of original and non-original suprastructures presented in the Russian dental materials market by studying microgaps between these components and original Straumann implants.
 MATERIAL AND METHODS: Seven bone-level implants and six tissue-level Straumann implants were used. The original Straumann titanium bone-level and tissue-level bases were used as control superstructures. The following non-original components were used as test specimens: cast cobaltchromium bone and tissue-level bases from GeoMedi, plastic burnout bone-level abutments from NT-trading, and non-original titanium bone- and tissue-level abutments from GeoMedi, Zirkonzahn, and NT-trading. Cobalt-chromium abutments for tissue-level to a soft state were obtained from GeoMedi. Cobaltchromium specimens, namely, cast-to-fabricate and pre-smooth abutments from GeoMedi and a plastic burnout abutment from NT-trading, underwent a full technical cycle of metal-ceramic crown fabrication. All specimens were pressed in epoxy using a SimpliMet 1000 automatic hot press. Specimens were ground using a Buehler Beta-1 grinding and polishing machine with an automatic Vector attachment. Grinding was conducted layer by layer in three steps with a step of 1 mm. The contact area was examined with a Tescan Mira LMU scanning electron microscope.
 RESULTS: Segments between the implant and abutment and between the abutment and screw were considered in calculating the study results. Using a scanning electron microscope (Tescan Mira LMU), the length of the gap sections not exceeding 1 m and the length of each gap section exceeding 1 m were measured on each segment. For each gap, the area percentage was calculated, with the gap width not exceeding 1 m.
 CONCLUSION: For Straumann bone- and tissue-level implants, the original Straumann titanium bases had the highest fit accuracy, but for Straumann bone-level implants, the non-original titanium abutments from GeoMedi and Zirkonzahn also had a similar fit. The fit of the non-original cobaltchromium bases from GeoMedi and the burnout plastic abutment from NT-trading did not meet the criteria for an accurate fit of the superstructures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call