Abstract
Our objective was to determine the accuracy of a point-of-care instrument, the Hospitalizations-Office Visits-Medical Conditions-Extra Care-Social Concerns (HOMES) instrument, in identifying patients with complex chronic conditions (CCCs) compared to an algorithm used to identify patients with CCCs within large administrative data sets. We compared the HOMES to Feudtner's CCCs classification system. Using administrative algorithms, we categorized primary care patients at a children's hospital into 3 categories: no chronic conditions, non-complex chronic conditions, and CCCs. We randomly selected 100 patients from each category. HOMES scoring was completed for each patient. We performed an optimal cut-point analysis on 80% of the sample to determine which total HOMES score best identified children with ≥1 CCC and ≥2 CCCs. Using the optimal cut points and the remaining 20% of the study population, we determined the odds and area under the curve (AUC) of having ≥1 CCC and ≥2 CCCs. The median (interquartile range [IQR]) age was 4 (IQR: 0, 8). Using optimal cut points of ≥7 for ≥1 CCC and ≥11 for ≥2 CCCs, the odds of having ≥1 CCC was19 times higher than lower scores (odds ratio [OR] 19.1 [95% confidence interval [CI]: 9.75, 37.5]) and of having ≥2 CCCs was 32 times higher (OR 32.3 [95% CI: 12.9, 50.6]). The AUCs were 0.76 for ≥1 CCC (sensitivity 0.82, specificity 0.80) and 0.74 for ≥2 CCCs (sensitivity 0.92, specificity 0.74). The HOMES accurately identified patients with CCCs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have