Abstract

BackgroundAn important aspect of preoperative planning for total hip arthroplasty is templating. Although two-dimensional (2D) templating remains the gold standard, computerized tomography (CT)-based three-dimensional (3D) templating is a novel preoperative planning technique. This study aims to compare the accuracy of a 2D and 3D plan using an anterior approach for the placement of the same uncemented prosthesis. MethodsTwo consecutive cohorts of 100 patients each were retrospectively analyzed. We analyzed the accuracy of the size of the implant (stem, cup, head), the length of head, and offset. As a secondary criterion, we analyzed the rates of stems with more than 3° of varus, fracture, and/or subsidence at 3 months postoperatively. ResultsWithin the exact size, the accuracy of the stem and cup size with the 2D plan was 69% and 56%, respectively. With the 3D plan accuracy being 88% (P = .0046) and 96% (P < .0001), respectively. Regarding size and length of the implant head, accuracy was 86% and 82% with the 2D plan and 100% (P < .0001) and 94% (P = .016), respectively, with the 3D plan. The offset of the implants increased beyond 3 mm in 23% of patients in the 2D group and in 5% of patients in the 3D group (P = .0003). The rate of varus stems was 10% in the 2D group and 2% in the 3D group (P = .03). Two fractures and one case of subsidence occurred in the 2D group. None were identified in the 3D cohort. ConclusionsA CT-based 3D plan is more accurate for implant size selection, allows better prosthetic offset, and reduces the rate of varus stems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call