Abstract
Dynamic programming models with continuous state and control variables are solved approximately using numerical methods in most applications. We develop a method for measuring the accuracy of numerical solution of stochastic dynamic programming models. Using this method, we compare the accuracy of various interpolation schemes. As expected, the results show that the accuracy improves as number of nodes is increased. Comparison of Chebyshev and linear spline indicates that the linear spline may give higher maximum absolute error than Chebyshev, however, the overall performance of spline interpolation is better than Chebyshev interpolation for non-smooth functions. Two-stage grid search method of optimization is developed and examined with accuracy analysis. The results show that this method is more efficient and accurate. Accuracy is also examined by allocating a different number of nodes for each dimension. The results show that a change in node configuration may yield a more efficient and accurate solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.