Abstract
The American Association of Physicists in Medicine’s Task Group No.43 has provided a standardised dose calculation methodology that is now the international benchmark for all brachytherapy dosimetry publications and treatment planning systems. However, limitations in this methodology has seen the development of Model-Based Dose Calculation Algorithms (MBDCA). In 2009, Varian (Varian Medical Systems, Palo Alto, CA, USA) released Acuros^{text {TM}} BrachyVision (ABV) which calculates dose by explicitly solving the Linear Boltzmann Transport Equation. In this study we have assessed the accuracy of ABV dose calculations within a range of materials relevant to high dose rate brachytherapy with an iridium-192 (^{text {192}}Ir) source. Accuracy assessment has been achieved by implementing a modelled GamaMed Plus ^{text {192}}Ir source within a series of phantoms using the GEANT4 Application for Emission Tomography (GATE) to calculate dose for comparison with dose as determined by ABV. Comparisons between GATE and ABV were made using point-to-point profile comparisons and 1D gamma analysis. Source validation results yielded good agreement with published data. Spectrum and TG43U1 comparisons showed no major differences, with TG43U1 comparisons agreeing within ± 1%. Point-to-point comparisons showed large differences between GATE and ABV near the source and in low density materials. 1D gamma analysis pass criteria of 2%/1 mm and 2%/2 mm yielded passing rates ranging between 51.72–100% and 62.07–100% respectively. A critical analysis of this study’s results suggest that ABV is unable to accurately calculate doses in low density materials. Furthermore, spatial accuracy of dose near the source is within 2 mm.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have