Abstract
With the continuous advancement of technology for obtaining geographic spatial data, the accumulated volume of such data has been increasing, thus imposing higher demands on the storage, organization, and management of such data. As a new form of data management, the Discrete Global Grid System (DGGS) provides standardized descriptions and the exchange of geographic information on a global scale, enabling the efficient storage and application of large-scale global spatial data. Constituting a traditional type of GIS spatial data, vector data have advantages such as clear positions, implicit attributes, and suitability for map output. The representation of vector data in the global discrete grid network based on an equal-area projection, such as the hexagonal grid, fundamentally solves problems such as data redundancy, geometric deformation, and data discontinuity that arise when representing multiple vector data in a gridded format. This paper proposes different gridding methods for various types of vector data, and a quantifiable accuracy evaluation system is established from the perspectives of geographical deviation, geometric features, and topological relationships, to evaluate the accuracy of the gridded vector data, covering all types of gridded vector data based on the hexagonal grid. The evaluation method is generally applicable to all hexagonal-grid-based gridded vector data, and can be generalized based on application scenarios, for evaluating the usability of hexagonal grid vector data.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have