Abstract
Optical navigation is one of the most promising technologies in the area of deep space autonomous navigation. However, since the optical images are strict motion blurred images, it is difficult to extract the lines of sight (LOS) to the beacons to reckon the spacecraft attitude and orbital position during the deep space cruise phase. This paper proposes a new blind restoration approach to effectively recover the clear image. We use a modified median filter to eliminate the black and white noises, and also, construct a blind estimation model, built on the sparsity of the gradient of navigation image, to estimate the global point spread function (PSF). Moreover, we select a few bright beacons to recover the motion blurred image, where the average value of the beacon centroid is adopted to calculate the relative position for the optical navigation. We present the simulation and actual image restoration experiment to demonstrate the accuracy and consistency of the relative position of the recovered navigation image of the proposed method. We show that the proposed method presents superior performance in comparison with the multiple cross correlation method. The estimated PSF is close to real PSF and the distributed energy of the beacon is concentrated ensuring a high SNR, where the accuracy of the relative position is higher than 0.1 pixel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.