Abstract

Airbags are essential automotive components that protect occupants from collisions. Airbag covers made of thermoplastic olefin (TPO) material should be deployed quickly without debris under various environments. To accurately predict airbag deployment during a collision, the mechanical properties of polymer materials at high strain rates according to temperature should be considered. In this study, a quasi-static test in the range of 0.0083, 0.0083 s−1 and a medium strain rate tensile test were performed at strain rates of 1, 10, and 100 s−1. Additionally, a split-Hopkinson Pressure bar test was performed to conduct a high strain rate tensile test at 1000, 1500, and 2000 s−1. Through this, tensile strength and failure strain were derived for each strain rate. As the polymer phase moves toward the high strain rate region, the β-transition becomes dominant, resulting in a non-linear increase in tensile strength in the Eyring plot. Based on the strain rate dependent mechanical behavior, an airbag module impact simulation was conducted to verify the effects of strain rate on airbag deployment using the LS-DYNA software. The airbag deployment analysis results showed deployment angle results similar to the actual experiment when strain rate dependent mechanical properties were applied. This is because higher strength was applied at high strain rates compared to low strain rates. Therefore, strain rate dependent mechanical properties are essential in high strain rate simulation such as collision analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call