Abstract
Arctic tundra environments are characterized by a spatially heterogeneous end-of-winter snow depth resulting from wind transport and deposition. Traditional methods for measuring snow depth do not accurately capture such heterogeneity at catchment scales. In this study we address the use of high-resolution, spatially distributed, snow depth data for Arctic environments through the application of unmanned aerial systems (UASs). We apply Structure-from-Motion photogrammetry to images collected using a fixed-wing UAS to produce a 1 m resolution snow depth product across seven areas of interest (AOIs) within the Trail Valley Creek Research Watershed, Northwest Territories, Canada. We evaluated these snow depth products with in situ measurements of both the snow surface elevation (n = 8434) and snow depth (n = 7191). When all AOIs were averaged, the RMSE of the snow surface elevation models was 0.16 m (<0.01 m bias), similar to the snow depth product (UASSD) RMSE of 0.15 m (+0.04 m bias). The distribution of snow depth between in situ measurements and UASSD was similar along the transects where in situ snow depth was collected, although similarity varies by AOI. Finally, we provide a discussion of factors that may influence the accuracy of the snow depth products including vegetation, environmental conditions, and study design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.