Abstract

ABSTRACT A high-quality snow depth product is very import for cryospheric science and its related disciplines. Current long time-series snow depth products covering the Northern Hemisphere can be divided into two categories: remote sensing snow depth products and reanalysis snow depth products. However, existing gridded snow depth products have some shortcomings. Remote sensing-derived snow depth products are temporally and spatially discontinuous and tend to underestimate snow depth, while reanalysis snow depth products have coarse spatial resolutions and great uncertainties. To overcome these problems, in our previous work we proposed a novel data fusion framework based on Random Forest Regression of snow products from Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), Advanced Microwave Scanning Radiometer-2 (AMSR2), Global Snow Monitoring for Climate Research (GlobSnow), the Northern Hemisphere Snow Depth (NHSD), ERA-Interim, and Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), incorporating geolocation (latitude and longitude), and topographic data (elevation), which were used as input independent variables. More than 30,000 ground observation sites were used as the dependent variable to train and validate the model in different time periods. This fusion framework resulted in a long time series of continuous daily snow depth product over the Northern Hemisphere with a spatial resolution of 0.25°. Here, we compared the fused snow depth and the original gridded snow depth products with 13,272 observation sites, showing an improved precision of our product. The evaluation indices of the fused (best original) dataset yielded a coefficient of determination R2 of 0.81 (0.23), Root Mean Squared Error (RMSE) of 7.69 (15.86) cm, and Mean Absolute Error (MAE) of 2.74 (6.14) cm. Most of the bias (88.31%) between the fused snow depth and in situ observations was in the range of −5 cm to 5 cm. The accuracy assessment of independent snow observation sites – Sodankylä (SOD), Old Aspen (OAS), Old Black Spruce (OBS), and Old Jack Pine (OJP) – showed that the fused snow depth dataset had high precision for snow depths of less than 100 cm with a relatively homogeneous surrounding environment. The results of random point selection and independent in situ site validation show that the accuracy of the fused snow depth product is not significantly improved in deep snow areas and areas with complex terrain. In the altitude range of 100 m to 2000 m, the fused snow depth had a higher precision, with R2 varying from 0.73 to 0.86. The fused snow depth had a decreasing trend based on the spatiotemporal analysis and Mann-Kendall trend test method. This fused snow depth product provides the basis for understanding the temporal and spatial characteristics of snow cover and their relation to climate change, hydrological and water cycle, water resource management, ecological environment, snow disaster and hazard prevention.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.