Abstract

With ever-increasing demand for three-dimensional (3D) imaging and shape measurements in a variety of fields, measurement accuracy has become of vital importance to numerous scientific and engineering applications. This paper presents an experimental investigation into the accuracy comparison of two prevalent 3D imaging and shape measurement methods: fringe projection profilometry (FPP) and 3D digital image correlation (3D-DIC) techniques. A detailed description of their principles reveals their inherent similarities and fundamental differences. A measurement system composed of both techniques is employed in the study, and a test target with speckle checkerboard patterns on its surface is adopted to allow simultaneous FPP and 3D-DIC measurements. The evaluation puts emphasis on how the geometric angles between key hardware components affect the 3D measurement accuracy. Experiments show that the depth and height measurements of both techniques can reach sub-micron accuracy, and the relative accuracy of the 3D shape or position measurements can reach 1/600 000.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.