Abstract

Experimental observations of delamination growth in two stiffened-skin geometries are compared to predictions made using a three-dimensional crack tip element based approach. Each geometry consists of a six-ply graphite/epoxy skin co-cured to a six-ply, hat-shaped stiffener containing a preimplanted teflon delamination between the skin and stiffener at the stiffener termination point. One stiffened-skin geometry was loaded in three-point bending and the other had in-plane tension loads applied to the skin. To predict delamination growth, a three-dimensional crack tip element analysis was first performed on each geometry in order to determine the total energy release rate, G, as well as its mode I, II and III components, G I, G II and G III, respectively. These results were used to define a mode mix at each point along the delamination front, G s/G, where G s=G II + G III. To obtain the delamination toughness, G c, it was assumed that G c exhibits the same dependence on G s/G as on GII/G, where the results for G c versus G II/G were taken from an earlier experimental study. Next, a comparison of the energy release rate to the toughness at each position along the delamination front was performed, and these results were scaled appropriately in order to predict the sequence of loads and corresponding locations at which the delamination will advance. The predictions were then compared to experimental results that included c-scan images of the test specimens taken at each increment of observed growth, and very good quantitative and qualitative correlations were obtained for both geometries. These results indicate the practicality of, and considerable computational savings that may be achieved by, employing crack tip element analyses for delamination growth predictions in realistic structural geometries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.