Abstract
The growth of delaminations in carbon fiber-reinforced epoxy (CFRE) specimens during R = 0.1 and R = {minus}1 fatigue loading has been studied. Artificial circular and square delaminations as well as ply cuts have been introduced at various interfaces during manufacturing to simulate a pre-damaged structure and to cause delamination growth. Criteria based on fracture mechanics will be used to describe the delamination failure. Predicting delamination growth with this approach requires the distribution of the local energy release rate along the delamination front. For obtaining this energy release rate distribution, the virtual crack closure method was found to be most favorable for three-dimensional finite element analysis as the separation of the total energy release rate into the contributing modes is inherent to the method and only one complete finite element analysis is necessary. Plots of measured delamination progression per load cycle (da/dN-values) versus computed energy release rates have been included in a Paris law diagram as obtained experimentally using double cantilever beam (DCB) specimens to characterize Mode 1 and end-notched flexure (ENF) and transverse crack tension (TCT) specimens to characterize Mode 2 failure, respectively. Computed mixed-mode results lie well within the scatter band of the experimentally determined Paris law formore » Mode 1 and Mode 2 failure.« less
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.