Abstract
The study concerns the quantitative evaluation of a satellite-based rain rate (RR) estimation algorithm using measurements from a network of ground-based meteorological stations across the Epirus Region, Greece, an area that receives among the maximum precipitation amounts over the country. The utilized version of the rain estimation algorithm uses the Meteosat-11 Brightness Temperature in five spectral regions ranging from 6.0 to 12.0 μm (channels 5–7, 9 and 10) to estimate the rain intensity on a pixel basis, after discriminating the rain/non-rain pixels with a simple thresholding method. The rain recordings of the meteorological stations’ network were spatiotemporally correlated with the satellite-based rain estimations, leading to a dataset of 2586 pairs of matched values. A statistical analysis of these pairs of values was conducted, revealing a Mean Error (ME) of −0.13 mm/h and a correlation coefficient (CC) of 0.52. The optimal computed Probability of False Detection (POFD), Probability of Detection (POD), the False Alarm Ratio (FAR) and the bias score (BIAS) are equal to 0.32, 0.88, 0.12 and 0.94, respectively. The study of the extreme values of the RR (the highest 10%) also shows satisfactory results (i.e., ME of 1.92 mm/h and CC of 0.75). The evaluation statistics are promising for operationally using this algorithm for rain estimation on a real-time basis.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have