Abstract
The behavior of crack growth for the fatigue damage accumulation near tip where damage is most severe is analyzed. Fatigue life is assessed for the welded members of bridges under traffic loading. Two parts are considered. They consist of the development of a fatigue damage accumulation model for welded bridge members and a method for calculating the stress intensity factor that is needed for evaluating the fatigue life of welded bridge members with cracks. Based on the concept of continuum damage accumulation and fatigue and fatigue crack growth relations, results are obtained to describe the relationship between the cracking count rate and the effective stress intensity factor. Crack growth and fatigue life are found for two types of welded members assisted by using fatigue experimental results. The stress intensity factors are modified by correcting for the geometric shape of the welded members in order to reflect the influence of the weldment and geometry. This is accomplished via the stress intensity factor. The calculated and measured fatigue lives were generally in good agreement for the initial cracking conditions of two types of welded members widely used in steel bridges.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have