Abstract

The present study evaluates the ratcheting response at notch roots of 1045 steel specimens experiencing uniaxial asymmetric fatigue cycles. Local stress and strain components at the notch root were analytically evaluated through the use of Neuber, Glinka, and Hoffman-Seeger (H-S) rules coupled with the Ahmadzadeh-Varvani (A-V) kinematic hardening model. Backstress promotion through coupled kinematic hardening model with the Hoffman-Seeger, Neuber, and Glinka rules was studied. Relaxation in local stresses on the notched samples as hysteresis loops moved forward with plastic strain accumulation during asymmetric loading cycles was observed. Local ratcheting results were simulated through FE analysis, where the Chaboche model was employed as the materials hardening rule. A consistent response of the ratcheting values was evidenced as predicted, and simulated results were compared with the measured ratcheting data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.