Abstract
Blue barley grain pigmentation results from anthocyanin accumulation in the aleurone layer. Anthocyanins are known for their beneficial effects on human health. The gene encoding the MYELOCYTOMATOSIS 2 (MYC2) transcription factor is potentially responsible for the blue coloration of the aleurone. In non-pigmented barley, a single nucleotide insertion in this gene causes a frameshift mutation with a premature stop codon. It was hypothesized that restoring the MYC2 reading frame could activate anthocyanin accumulation in the aleurone. Using a targeted mutagenesis approach in the present study, the reading frame of MYC2 was restored in the non-pigmented cultivar Golden Promise. Genetic constructs harboring cas9 and gRNA expression units were developed, pre-validated in protoplasts, and then functional MYC2 alleles were generated at the plant level via Agrobacterium-mediated transformation. Anthocyanin accumulation in the aleurone layer of grains from these mutants was confirmed through microscopy and chemical analysis. The expression of anthocyanin biosynthesis genes was analyzed, revealing that the restoration of MYC2 led to increased transcript levels of F3H and ANS genes. These results confirm the critical role of the MYC2 transcription factor in the blue aleurone trait and provide a biotechnological solution for enriching barley grain with anthocyanins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.