Abstract

Industrial effluents constitute a major source of metal pollution of aquatic bodies. Moreover, due to their environmental persistence, toxic metal pollution is of special concern. Microbial reduction is considered a promising strategy for toxic metal removal among the several methods available for metal remediation. Here, we describe the coremediation of toxic Cr(VI) and Te(IV) by the dissimilatory metal reducing bacterium-Shewanella oneidensis MR-1. In the presence of both Cr(VI) and Te(IV), S. oneidensis MR-1 reduced Cr(VI) to the less toxic Cr(III) form, but not Te(IV) to Te(0). The reduced Cr(III) ions complexed rapidly with Te(IV) ions and were precipitated from the cell cultures. Electron microscopic analyses revealed that the Cr-Te complexed nanoparticles localized on the bacterial outer membranes. K-edge X-ray absorption spectrometric analyses demonstrated that Cr(III) produced by S. oneidensis MR-1 was rapidly complexed with Te(IV) ions, followed by formation of amorphous Cr(III)-Te(IV) nanoparticles on the cell surface. Our results could be applied for the simultaneous sequestration and detoxification of both Cr(VI) and Te(IV) as well as for the preparation of nanomaterials through environmental friendly processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.