Abstract

The accumulation of advanced glycosylation end products (AGEs) is believed to be a factor in the development of aging nephropathy. We have attempted to establish a link between the formation of AGEs and the onset of renal impairment with aging, indicated by albuminuria, using a fluorescence assay and immunohistochemical detection of AGEs in the renal extracellular matrix in rats. The fluorescence of collagenase-digested Type IV collagen from GBM increased with age, from 1.65 +/- 0.05 AU/mM OHPro (3 months) and 1.58 +/- 0.04 (10 months) to 2.16 +/- 0.06 (26 months) (p < 0.001) and 2.53 +/- 0.18 (30 months) (p < 0.001). In contrast, the extent of early glycation products significantly decreased from 5.35 +/- 0.25 nmol HCHO/nmol OHPro at 3 months to 3.14 +/- 0.19 at 10 months (p < 0.001), 3.42 +/- 0.38 at 26 months, and 0.74 +/- 0.08 at 30 months (p < 0.001). The urinary fluorescence of circulating AGE rose from 2.42 +/- 0.15 AU/mg protein (3 months), 1.69 +/- 0.07 (10 months), to 4.63 +/- 0.35 (26 months) (p < 0.01) and 4.73 +/- 0.72 (30 months), while the serum fluorescence increased from 0.39 +/- 0.02 AU/mg protein at 3 months and 0.43 +/- 0.02 at 10 months to 0.59 +/- 0.04 at 26 months (p < 0.001) and 0.54 +/- 0.03 at 30 months (p < 0.04). Polyclonal antibodies raised against AGE RNase showed faint areas of AGE immunoreactivity in mesangial areas in the nephrons of young rats. The immunolabeling of Bowman's capsule, the mesangial matrices, and the peripheral loops of glomerular and tubule basement membranes increased with rat age. The increase in circulating AGE peptides parallels the accumulation of AGEs in the nephron, and this parallels the pattern of extracellular matrix deposition, suggesting a close link between AGE accumulation and renal impairment in aging rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call