Abstract

Analyses of hypervelocity micrometeoroid impact craters preserved in lunar material and on the panels of the Long Duration Exposure Facility (LDEF) indicate that each year Earth accretes about 3 × 107kg of interplanetary dust particles (IDPs) from the zodiacal cloud (E. Grünet al.1985,Astron. Astrophys.286, 915–924; S. G. Love and D. E. Brownlee, 1993,Science262, 550–553). The size distributions of these lunar and LDEF craters indicate that the mass distribution of IDPs encountering Earth peaks at about 200 μm diameter. This particle-size cutoff may be indicative of collisionally evolved asteroidal dust, where the collisional lifetime of dust particles larger than ∼100 μm is shorter than the time required for their orbits to decay under Poynting–Robertson light drag from the asteroid belt to Earth (B. Å. S. Gustafson, 1994,Annu. Rev. Earth Planet. Sci.22, 553–595). Additionally, analyses of IDPs collected from the stratosphere by high-flying aircraft reveal a diversity in chemical composition which is even narrower than that of the meteorites (G. J. Flynn, 1995,Nature376, 114). Together these findings suggest that IDPs present in the atmosphere and our collections may originate from very limited sources in the asteroid belt.The most abundant sources of dust to be unambiguously linked to the zodiacal cloud are the three asteroid families Eos, Themis, and Koronis—the progenitors of the ten-degree and low-latitude dust bands discovered by the Infrared Astronomical Satellite in 1984. We use direct numerical integration of the full equations of motion to model the orbital evolution of dust particles from these three families as well as from other nonfamily asteroids and from the population of known short period comets. Our simulations include gravitational perturbations from the planets, radiation pressure, and solar wind drag. We find that a large, and perhaps the dominant, fraction of the IDPs accreted by Earth comes from the asteroid families Eos, Themis, and Koronis and that probably fewer than 25% of accreted IDPs come from comets. We also find a seasonal variation in the distribution of ascending nodes of the Themis and Koronis dust particle orbits near Earth. Earth-orbiting instruments utilizing aero-gels could exploit these seasonal variations to collect and return intact samples of these two asteroid families.Finally, we demonstrate how the long-term accretion rate of asteroidal dust from all sources should be anti-correlated with Earth's changing orbital eccentricity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call