Abstract
In translucent optical networks, the usage of sparse opto-electronic regenerators permits to overcome optical signal quality degradations. In dynamic translucent optical networks, where lightpaths are established upon request, regenerators can be effectively time shared. However, the current generalized multiprotocol label switching (GMPLS) protocol suite does not consider how to dynamically reserve and release shared regenerators and how to distribute regenerator availability information to network nodes. In this paper, four <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Translucent</i> <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Lightpath</i> <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Dynamic</i> <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Provisioning</i> <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">(TLDP)</i> schemes are proposed to establish lightpaths in dynamic distributed translucent optical networks. TLDP schemes differently combine the utilization of specific open shortest path first-traffic engineering (OSPF-TE) or resource reservation protocol-traffic engineering (RSVP-TE) extensions and shared regenerator availability information. Simulation results show that TLDP scheme based on OSPF-TE extensions obtains lower lightpath setup time, but higher control plane load than TLDP schemes based on RSVP-TE extensions. Moreover, schemes based on RSVP-TE extensions or on OSPF-TE extensions obtain the same lowest blocking probability.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have