Abstract

A comparative examination of cysteine proteinases in winter wheat ( Triticum aestivum L.) seedlings differing in sensitivity to frost and drought revealed many similarities and differences in response to water deprivation. Azocaseinolytic activity was enhanced under water deficiency, but the enhancement was significantly lower in the tolerant genotype (Kobra cultivar). On the contrary, acclimation of wheat seedlings at low temperature had no effect on the proteolytic activity of the tolerant cultivar and depressed the azocaseinolytic activity of the sensitive cultivar (Tortija). However, the observed depression of enzyme activity was fully reversible under dehydration. The content of soluble proteins was reduced in dehydrated non-acclimated and in acclimated seedlings of the frost-sensitive cultivar, but increased in acclimated seedlings of the tolerant cultivar. The cysteine proteinases were preferentially induced under water deficiency when assessment was based on the inhibitory effect of iodoacetate on azocasein hydrolysis. Separation of cysteine proteinases by SDS-PAGE containing gelatin as a substrate showed two bands with apparent molecular masses of 36 and 38 kDa in the sensitive cultivar, and a third band was detected (42 kDa) in the resistant cultivar. Water deficit and low temperature induced the new cysteine proteinases of molecular masses about 29, 33 and 42 kDa in sensitive non-acclimated seedlings. Polyclonal antibodies raised against Arabidopsis proteinase responsive to drought (RD21) cross-reacted with the protein in the 33 kDa region, and a slight signal was obtained in the 42 kDa region, but only in dehydrated seedlings acclimated to frost. Several polypeptides of molecular masses of 30, 22, 20 and 18 kDa were recognized by the Arabidopsis aleurain-like proteinase (AtALEU) antibodies. The results presented indicate that cysteine proteinases are potentially responsible for both low temperature and drought tolerance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.