Abstract

ABSTRACTLongitudinal studies are commonly used to examine possible causal factors associated with human health and disease. However, the statistical models, such as two-way ANOVA, often applied in these studies do not appropriately model the experimental design, resulting in biased and imprecise results. Here, we describe the linear mixed effects (LME) model and how to use it for longitudinal studies. We re-analyze a dataset published by Blanton et al. in 2016 that modeled growth trajectories in mice after microbiome implantation from nourished or malnourished children. We compare the fit and stability of different parameterizations of ANOVA and LME models; most models found that the nourished versus malnourished growth trajectories differed significantly. We show through simulation that the results from the two-way ANOVA and LME models are not always consistent. Incorrectly modeling correlated data can result in increased rates of false positives or false negatives, supporting the need to model correlated data correctly. We provide an interactive Shiny App to enable accessible and appropriate analysis of longitudinal data using LME models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.