Abstract

In the aircraft industry, the design of floor assembly jigs (FAJs) is an important activity that directly affects productivity. It involves tool frame generation and locator and clamp placement to ensure that the assembly components are held properly with respect to each other to meet the required tolerances. The tool designer also has to analyze the design to ensure that the assembly process does not pose accessibility and ergonomics related problems. The current approach is dependent on the experience of the tool designer and the limited visualization possible on commercial CAD systems. This leads to extensive redesign when accessibility and ergonomic related problems are detected on the physical prototype. In this research, an integrated Virtual Reality-based environment is being developed for the analysis of assembly product and jig designs. CAD models of the assembly product and jig are imported into a Virtual Reality (VR)-based visualization system for accessibility analysis. A motion tracking system is integrated to allow ergonomic posture analysis. The combined VR and motion tracking system allows evaluation of alternate assembly sequences and the jig design. In this paper, the theoretical basis for the analysis environment is presented along with details of the prototype implementation of this system. Relevance to industry Floor assembly jigs are used extensively by the aircraft industry. Improvement of their design process will lead to savings in better design and reduced development time and cost. Better designs will require fewer changes after the jigs have been fabricated. The overall result will be a reduction in product realization time and cost and improved product quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call