Abstract

Herein, we describe the rhodium-catalyzed C-H amination reaction of 1,2-boryl sulfamate esters derived from amphoteric α-boryl aldehydes. Depending on the substitution pattern of the boryl sulfamate ester, a diverse range of five- or six-membered ring heterocycles are accessible using this transformation. The highly chemoselective nature of the C-H functionalization reaction preserves the alkyl boronate functional group, which enables the synthesis of B-C-N and B-C-C-N motifs that are present in a number of hydrolase inhibitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call