Abstract

Constructing heterojunctions with strong interfacial interactions can accelerate the transfer and separation of photogenerated charge carriers. However, finding a simple strategy to construct tightly connected heterojunctions remains a major challenge. In this work, AgBr/BiOBr S-scheme heterojunctions were designed via a straightforward co-anionic strategy without using a solvent. The experimental results indicate that the AgBr/BiOBr heterojunction with a close contact interface can extend the use of visible light, accelerate the separation, and induce the transfer of photoelectrons and holes while maintaining an excellent redox capacity. Undoubtedly, the photocatalytic reduction rate of carbon dioxide to carbon monoxide by 1.0 AgBr/BiOBr is 87.73 μmol·g-1·h-1 (quantum efficiency is 0.57%), which is 12.15 times and 4.45 times higher than that of pure AgBr and BiOBr, respectively. The present work provides insights into a simple strategy for the preparation of strongly interacting interfacial heterojunctions for photocatalytic CO2 reduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.