Abstract
Endosymbionts, which are widely observed in nature, have undergone reductive genome evolution because of their long-term intracellular lifestyle. Here we compared the complete genome sequences of two different endosymbionts, Buchnera and a protist mitochondrion, with their close relatives to study the evolutionary rates of functional genes in endosymbionts. The results indicate that the rate of amino acid substitution is two times higher in symbionts than in their relatives. This rate increase was observed uniformly among different functional classes of genes, although strong purifying selection may have counterbalanced the rate increase in a few cases. Our data suggest that, contrary to current views, neither the Muller's ratchet effect nor the slightly deleterious mutation theory sufficiently accounts for the elevated evolutionary rate. Rather, the elevated evolutionary rate appears to be mainly due to enhanced mutation rate, although the possibility of relaxation of purifying selection cannot be ruled out.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.