Abstract

Umbilical cord-derived mesenchymal stem cells (UC-MSC) are promising candidates for wound healing. However, the low amplification efficiency of MSC in vitro and their low survival rates after transplantation have limited their medical application. In this study, we fabricated a micronized amniotic membrane (mAM) as a microcarrier to amplify MSC in vitro and used mAM and MSC (mAM-MSC) complexes to repair burn wounds. Results showed that MSC could live and proliferate on mAM in a 3D culture system, exhibiting higher cell activity than in 2D culture. Transcriptome sequencing of MSC showed that the expression of growth factor-related, angiogenesis-related, and wound healing-related genes was significantly upregulated in mAM-MSC compared to traditional 2D-cultured MSC, which was verified via RT-qPCR. Gene ontology (GO) analysis of differentially expressed genes (DEGs) showed significant enrichment of terms related to cell proliferation, angiogenesis, cytokine activity, and wound healing in mAM-MSC. In a burn wound model of C57BL/6J mice, topical application of mAM-MSC significantly accelerated wound healing compared to MSC injection alone and was accompanied by longer survival of MSC and greater neovascularization in the wound.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.