Abstract

In this work, we investigated the magnetic annihilation and reconnection and the resulted hot electron acceleration driven by double-beam intense laser pulses in two-layer near critical density (NCD) plasma target. The results are obtained by performing two-dimensional (2D) particle-in-cell (PIC) simulations. It is found that a quasi-mono-energetic peak can be formed in the energy spectrum of electrons accelerated by the process of magnetic field annihilation (MA) at cutoff energy. Electron spectra feature depends on the length of the second low-density layer. This suggests that the process of relativistic magnetic annihilation may be controlled in experiments by target design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.