Abstract

We demonstrate a type of singular beam that accelerates along a parabolic trajectory and has a cross-section intensity pattern exhibiting a dark central region surrounded by multiple rings with the innermost (main) ring resembling an equilateral triangle. The key to creating such beams is to replace the standard triangle with a rounded one, made up of six circular arcs connected end to end. The individual input phase mask for each arc can be analytically computed, and the whole input phase mask for the beam is thus obtained by piecing together these individual phases. Furthermore, the continuity of field forces of these triangle-like modes is discrete; that is, an index similar to the topological charge of vortex beams arises. Numerical results show that the energy flow in the beam's cross section circulates around the dark center along the triangle-like main ring, suggesting a possible application in orbiting particles along an irregular path.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.