Abstract

We introduce two new algorithms to minimise smooth difference of convex (DC) functions that accelerate the convergence of the classical DC algorithm (DCA). We prove that the point computed by DCA can be used to define a descent direction for the objective function evaluated at this point. Our algorithms are based on a combination of DCA together with a line search step that uses this descent direction. Convergence of the algorithms is proved and the rate of convergence is analysed under the Łojasiewicz property of the objective function. We apply our algorithms to a class of smooth DC programs arising in the study of biochemical reaction networks, where the objective function is real analytic and thus satisfies the Łojasiewicz property. Numerical tests on various biochemical models clearly show that our algorithms outperform DCA, being on average more than four times faster in both computational time and the number of iterations. Numerical experiments show that the algorithms are globally convergent to a non-equilibrium steady state of various biochemical networks, with only chemically consistent restrictions on the network topology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.