Abstract

AbstractThe accuracy of a model obtained by multi‐parameter full‐waveform inversion can be estimated by analysing the sensitivity of the data to perturbations of the model parameters in selected subsurface points. Each perturbation requires the computation of the seismic response in the form of Born scattering data for a typically very large number of shots, making the method time consuming. The computational cost can be significantly reduced by placing sources of different types at the Born scatterer, the point where the subsurface parameters are perturbed. Instead of modelling each shot separately, reciprocity relations provide the wavefields from the shot positions to the scatter point in terms of wavefields from the scatterer to the shot positions. In this way, the Born scattering data from a single point in the isotropic elastic case for a marine acquisition with pressure sources and receivers can be expressed in terms of the wavefields for force and moment tensor sources located at the scatterer and only a small number of forward runs are required. A two‐dimensional example illustrates how the result can be used to determine the Hessian and local relative covariance matrix for the model parameters at the scatterer at the cost of five forward simulations. In three dimensions, that would be nine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.