Abstract

Long-read sequencing is now routinely used at scale for genomics and transcriptomics applications. Mapping long reads or a draft genome assembly to a reference sequence is often one of the most time-consuming steps in these applications. Here we present techniques to accelerate minimap2, a widely used software for this task. We present multiple optimizations using single-instruction multiple-data parallelization, efficient cache utilization and a learned index data structure to accelerate the three main computational modules of minimap2: seeding, chaining and pairwise sequence alignment. These optimizations result in an up to 1.8-fold reduction of end-to-end mapping time of minimap2 while maintaining identical output.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.