Abstract
Magnetic skyrmions are promising candidates as information carriers in spintronic devices. The transport of individual skyrmions in a fast and controlled way is a key issue in this field. Here we introduce a platform for accelerating, guiding and compressing skyrmions along predefined paths. The guiding mechanism is based on two parallel line defects (rails), one attractive and the other repulsive. Numerical simulations, using parameters from state-of-the-art experiments, show that the speed of the skyrmions along the rails can be increased up to an order of magnitude with respect to the non-defect case whereas the distance between rails can be as small as the initial radius of the skyrmions. In this way, the flux of information that can be coded and transported with magnetic skyrmions could be significantly increased.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.