Abstract

Topology optimization (TO) is a common technique used in free-form designs. However, conventional TO-based design approaches suffer from high computational cost due to the need for repetitive forward calculations and/or sensitivity analysis, which are typically done using high-dimensional simulations such as finite element analysis (FEA). In this work, artificial neural networks are used as efficient surrogate models for forward and sensitivity calculations in order to greatly accelerate the design process of topology optimization. To improve the accuracy of sensitivity analyses, dual-model artificial neural networks that are trained with both forward and sensitivity data are constructed and are integrated into the Solid Isotropic Material with Penalization (SIMP) method to replace the FEA. The performance of the accelerated SIMP method is demonstrated on two benchmark design problems namely minimum compliance design and metamaterial design. The efficiency gained in the problem with size of 64 × 64 is 137 times in forward calculation and 74 times in sensitivity analysis. In addition, effective data generation methods suitable for TO designs are investigated and developed, which lead to a great saving in training time. In both benchmark design problems, a design accuracy of 95% can be achieved with only around 2000 training data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.