Abstract

Materials that speed up wound healing can be of great benefit to patients and healthcare providers. One-layer dressings, however, have unsatisfactory healing efficacy since it is impossible to use materials with different properties simultaneously, and drug delivery is limited by the depth of penetration. The present study utilized a multilayer wound dressing composed of bacterial cellulose (BC) hydrogel, gelatin/alginate (Gel/Alg) hydrogel, and polycaprolactone (PCL) nanofibers loaded with ciprofloxacin (CIP) to promote the healing process in vivo. The designed dressings showed significant water absorption and sufficient water vapor transmission rate (WVTR) after one week, confirming their ability to absorb wound exudate. Within the first four hours, significant amounts of CIP were released from the drug-containing dressing. Then, between hours 4 and 24, the rate decreased and plateaued on day 9. Both positive and negative bacterial strains were inhibited by the gradual release of CIP, while fibroblasts retained their normal morphology and metabolic activity. Lastly, in vivo tests demonstrated that CIP-loaded multilayer dressings could significantly speed up full-thickness wound healing during 14 days, by reducing inflammation, stimulating re-epithelialization, and enhancing skin regeneration. Our findings indicate that multilayering BC hydrogels with drug-loaded nanofibers provide a promising way to promote wound healing by utilizing all the distinctive properties of these layers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.