Abstract
We present a novel approach to solve dynamic programs (DP), which are frequent in computer vision, on tree-structured graphs with exponential node state space. Typical DP approaches have to enumerate the joint state space of two adjacent nodes on every edge of the tree to compute the optimal messages. Here we propose an algorithm based on Nested Benders Decomposition (NBD) that iteratively lower-bounds the message on every edge and promises to be far more efficient. We apply our NBD algorithm along with a novel Minimum Weight Set Packing (MWSP) formulation to a multi-person pose estimation problem. While our algorithm is provably optimal at termination it operates in linear time for practical DP problems, gaining up to 500\({\times }\) speed up over traditional DP algorithm which have polynomial complexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.