Abstract

An accelerated solvent extraction (ASE) procedure for use with gas chromatography-mass spectrometry (GC-MS) was optimized for the determination of eight polycyclic aromatic hydrocarbons (PAHs) in cocoa beans. Plackett-Burman and rotatable central composite design (RCCD) indicated that three variables affected the recoveries of PAHs during the extraction and purification steps: agitation time in the second liquid-liquid partition, weight of silica gel in the column, and volume of hexane for PAH elution from the column. After obtaining the optimal conditions, a single laboratory method validation was performed. Linearity was demonstrated for benzo[a]pyrene in the concentration range from 0.5 to 8.0mgkg-1 of sample, corresponding to 1.25-20.0μgkg-1 of cocoa on a fat basis. For the other analytes, linearity was observed from 0.75 to 8.0μgkg-1 of sample (1.88-20.0μgkg-1 of cocoa on a fat basis). Significant matrix effects were found for chrysene and benzo[b]fluoranthene. The precision of the method was verified with relative standard deviations (RSDs) ranging from 2.57 to 14.13% and from 4.36 to 19.77% under repeatability and intermediate precision conditions, respectively. The average recoveries of the eight PAHs ranged from 74.99 to 109.73%. These parameters, limits and measurement uncertainties met the performance criteria established by European Union regulations, except for the theoretical limit of detection for chrysene. The method was applied to the analysis of samples of Brazilian cocoa beans, and only one sample was found to have a PAH content above the maximum limit defined by the European Union legislation. This optimized and validated method is intended to be used as part of the official Brazilian monitoring programs investigating contaminants and residues in food.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.