Abstract
Assessing suitability of amorphous polymers in durable products requires understanding of long-term effects of physical aging on the material properties. This work shows four polyesters with varying diol composition (poly(ethylene-co-1,4-cyclohexylenedimethylene terephthalate) (PETG1 and PETG2 with ∼30 and ∼60% 1,4-cyclohexylenedimethylene (CHDM), respectively), poly(ethylene-co-2,2,4,4-tetramethyl-1,3-cyclobutanediol terephthalate) (PETT) with ∼30% 2,2,4,4-tetramethyl-1,3-cyclobutanediol (TMCD) and poly(1,4-cyclohexylenedimethylene-co-2,2,4,4-tetramethyl-1,3-cyclobutanediol terephthalate) (PCTT) with ∼80% CHDM and ∼20% TMCD) exposed to thermal treatment at 20, 30 and 40 °C below their respective glass transition temperatures for up to 504 h to accelerate physical aging. The enthalpy relaxation was investigated by differential scanning calorimetry and compared to mechanical changes manifested as tensile yield strength increase. The physical aging rates were found to depend on both chemical structure and composition of CHDM and TMCD segments, where the introduction of TMCD inhibited physical aging. Arrhenius and Vogel-Fulcher-Tamman models were used to fit horizontal shift factors and evaluate the time and temperature dependencies for each polyester. From this study, the two models showed no significant differences in ability to describe the effects of physical aging. The Arrhenius activation energies, Ea, were all in the range 118–244 kJ mol−1, were both PETG1 and PETG2 showed no significant difference between Ea for enthalpy relaxation and yield strength increase, whereas PETT and PCTT showed ∼19 and ∼107% difference between the two, respectively, suggesting that the relationship between the two phenomena is not independent of chemical structure. The difference between the activation energies suggests that the time scales for physical aging are different when observed as enthalpy relaxation and yield strength.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.