Abstract
Designing definite transition metal heterointerfaces is considered an effective strategy for the construction of efficient and robust oxygen evolution reaction (OER) electrocatalysts, but rather challenging. Herein, amorphous NiFe hydr(oxy)oxide nanosheet arrays (A-NiFe HNSAs) are grown in situ on the surface of a self-supporting Ni metal-organic frameworks (SNMs) electrode via a combination strategy of ion exchange and hydrolytic co-deposition for efficient and stable large-current-density water oxidation. The existence of the abundant metal-oxygen bonds on the heterointerfaces can not only be of great significance to alter the electronic structure and accelerate the reaction kinetics, but also enable the redistribution of Ni/Fe charge density to effectively control the adsorption behavior of important intermediates with a close to the optimal d-band center, dramatically narrowing the energy barriers of the OER rate-limiting steps. By optimizing the electrode structure, the A-NiFe HNSAs/SNMs-NF exhibits outstanding OER performance with small overpotentials of 223 and 251mV at 100 and 500mA cm-2 , a low Tafel slope of 36.3mV dec-1 , and excellent durability during 120h at 10mA cm-2 . This work significantly provides an avenue to understand and realize rationally designed heterointerface structures toward effective oxygen evolution in water-splitting applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.