Abstract

Transition metal-based oxides have been reported as an important family of electrocatalysts for water splitting owing to their possible large-scale applications that are highly desirable for the hydrogen generation industry. Herein, we report a facile method for the preparation of phosphate-decorated NiFe oxides on nickel foam as efficient oxygen evolution reaction (OER) electrocatalysts for water oxidation. The OER electrocatalysts were developed through the pyrolysis of MIL(Fe) metal-organic frameworks (MOFs), which were modified with Ni and P species. It was found that the formation of NiO on the Fe2O3 surface (NiO@Fe2O3) can enrich electrocatalytic active sites for the OER. Meanwhile, the incorporation of P into NiO@Fe2O3 (Px-NiO@Fe2O3) creates abundant oxygen vacancies, which facilitates the surface charge transfer for OER electrocatalysis. Benefiting from the structure and composition advantages, P2.0-NiO@Fe2O3/NF exhibits the best performance for OER electrocatalysis among other prepared electrocatalysts, with an overpotential of 208 mV at the OER current density of 10 mA cm-2 and a small Tafel slope of 69.64 mV dec-1 in 1 M KOH solution. Additionally, P2.0-NiO@Fe2O3/NF shows an outstanding durability for the OER electrocatalysis, maintaining the OER current density above 20 mA cm-2 for more than 100 h.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call