Abstract

Polymeric biomaterials with regular pore structure can generate distinctive properties in various biomedical applications. This study presents scaffolds comprising chitin, chitosan, and gelatin with pore geometry of inverted colloidal crystals (ICC) for guiding differentiation of induced pluripotent stem (iPS) cells toward neurons. Chitin–chitosan–gelatin ICC scaffolds were fabricated by self-assembly, crosslinking, infiltration, dehydration, and particle leaching. The results revealed that ethanol as a dispersion medium yielded a higher regularity of colloidal template than ethylene glycol. For the adhesion of iPS cells, freeform constructs were more efficient than ICC constructs. The reverse was true for the viability of iPS cells. The quantity of stage-specific embryonic surface antigen-1 in cultured freeform construct was larger than that in cultured ICC construct, indicating that the former preserved more phenotypic characteristics of iPS cells than the latter. Moreover, β III tubulin-identified region in ICC construct was larger than that in freeform construct, demonstrating that the differentiation of iPS cells toward neurons in ICC construct was faster than that in freeform construct. ICC topography in chitin–chitosan–gelatin scaffolds can accelerate neuronal differentiation of iPS cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.