Abstract

To accelerate the acquisition of J-resolved proton magnetic resonance spectroscopic imaging (1 H-MRSI) data for high-resolution mapping of brain metabolites and neurotransmitters. The proposed method used a subspace model to represent multidimensional spatiospectral functions, which significantly reduced the number of parameters to be determined from J-resolved 1 H-MRSI data. A semi-LASER-based (Localization by Adiabatic SElective Refocusing) echo-planar spectroscopic imaging (EPSI) sequence was used for data acquisition. The proposed data acquisition scheme sampled -space in variable density, where t1 and t2 specify the J-coupling and chemical-shift encoding times, respectively. Selection of the J-coupling encoding times (or, echo time values) was based on a Cramer-Rao lower bound analysis, which were optimized for gamma-aminobutyric acid (GABA) detection. In image reconstruction, parameters of the subspace-based spatiospectral model were determined by solving a constrained optimization problem. Feasibility of the proposed method was evaluated using both simulated and experimental data from a spectroscopic phantom. The phantom experimental results showed that the proposed method, with a factor of 12 acceleration in data acquisition, could determine the distribution of J-coupled molecules with expected accuracy. In vivo study with healthy human subjects also showed that 3D maps of brain metabolites and neurotransmitters can be obtained with a nominal spatial resolution of 3.0 × 3.0 × 4.8 mm3 from J-resolved 1 H-MRSI data acquired in 19.4 min. This work demonstrated the feasibility of highly accelerated J-resolved 1 H-MRSI using limited and sparse sampling of -space and subspace modeling. With further development, the proposed method may enable high-resolution mapping of brain metabolites and neurotransmitters in clinical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.