Abstract

Polytoma obtusum and Polytoma uvella are members of a clade of nonphotosynthetic chlorophyte algae closely related to Chlamydomonas humicola and other photosynthetic members of the Chlamydomonadaceae. Descended from a nonphotosynthetic mutant, these obligate heterotrophs retain a plastid (leucoplast) with a functional protein synthetic system, and a plastid genome (lpDNA) with functional genes encoding proteins required for transcription and translation. Comparative studies of the evolution of genes in chloroplasts and leucoplasts can identify modes of selection acting on the plastid genome. Two plastid genes--rrn16, encoding the plastid small-subunit rRNA, and tufA, encoding elongation factor Tu--retain their functions in protein synthesis after the loss of photosynthesis in two nonphotosynthetic Polytoma clades but show a substantially accelerated rate of base substitution in the P. uvella clade. The accelerated evolution of tufA is due, at least partly, to relaxed codon bias favoring codons that can be read without wobble, mainly in three amino acids. Selection for these codons may be relaxed because leucoplasts are required to synthesize fewer protein molecules per unit time than are chloroplasts (reduced protein synthetic load) and thus require a lower rate of synthesis of elongation factor Tu. Relaxed selection due to a lower protein synthetic load is also a plausible explanation for the accelerated rate of evolution of rrn16, but the available data are insufficient to test the hypothesis for this gene. The tufA and rrn16 genes in Polytoma oviforme, the sole member of a second nonphotosynthetic clade, are also functional but show no sign of relaxed selection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.